Tutkijat ratkaisivat halkeamien mysteerin – parantaa yleisten rakennusmateriaalien kestävyyttä

Löydön myötä esimerkiksi rakennusmateriaaleina usein käytettyjen teräksen, alumiinin ja titaanin halkeamia voidaan ennakoida aiempaa tarkemmin. Margot Lepetit / Aalto-yliopisto

Tutkijat onnistuivat selvittämään insinöörejä vaivanneen paradoksin: miksi materiaalien halkeamat etenevät nopeammin, kun jännitys pääsee välillä vapautumaan.

Halkeamia ja murtumia esiintyy kaikkialla, aina lentokoneiden osista rakennuksiin, siltoihin tai lääketieteellisiin laitteisiin. Niiden ennakointi – eli miten ja milloin ne syntyvät ja kasvavat – on yksi insinööritieteiden suurista haasteista.  Ratkaisu ongelmaan voi taas parantaa materiaalien, komponenttien ja rakenteiden kestävyyttä merkittävästi.

Aalto-yliopiston teknillisen fysiikan laitoksen tutkijat ovat nyt löytäneet uuden tavan kuvata rakenteellisten halkeamien etenemistä tilastollisen fysiikan avulla. Havainto ratkaisee fyysikoita pitkään askarruttaneen paradoksin ja auttaa parantamaan monien teknisten materiaalien luotettavuutta ja kestävyyttä. Tutkimus on juuri julkaistu Physical Review Letters -lehdessä.

Materiaalit altistuvat joko staattiselle tai jaksoittaiselle rasitukselle.  Esimerkiksi rakennukset joutuvat staattisen rasituksen kohteeksi ja se  aiheuttaa halkeamia pitkällä aikavälillä. Toisaalta vaikka pyörivissä laitteissa tai lentokoneiden osissa halkeamia aiheuttaa jaksoittainen rasitus.

“Väsymismurtumat kasvavat nopeammin, kun rasitus helpottaa välillä. Tämä on ihmetyttänyt insinöörejä jo pitkään, sillä intuitiivisesti voisi ajatella, että juuri jatkuva jännitys nopeuttaisi halkeamien kasvua”, sanoo tutkijatohtori Tero Mäkinen.

Mäkisen ja Complex Systems and Materials -tutkimusryhmän havaintojen mukaan halkeamat eivät kuitenkaan kasva tasaisesti, vaan etenevät ajoittaisina ryöpsähtämisinä, kun ne tuhoavat mikroskooppisen pieniä esteitä materiaalien sisällä. Tilastollisen fysiikan avulla tutkijat kehittivät lisäksi uuden asteikon, jolla voidaan kuvata materiaalissa tapahtuvia muutoksia juuri ennen halkeamista.

”Tutkimuksemme yhdistää empiiriset väsymismallit ja fysiikkaan perustuvat murtumisteoriat. Kehitimme kokeellisesti mitattavan asteikon, joka kuvaa tarkasti materiaalin muutoksen etenemistä ja halkeamien vaikutuksia. Tulostemme avulla voi paremmin ennustaa halkeamien syntymistä ja näin parantaa materiaalien suunnittelua”, sanoo professori ja ryhmänjohtaja Mikko Alava.

Löydön myötä esimerkiksi rakennusmateriaaleina usein käytettyjen teräksen, alumiinin ja titaanin halkeamia voidaan ennakoida aiempaa tarkemmin.

“Tulokset voivat parantaa käyttöiän ennustamista aloilla, joilla turvallisuus on kriittistä – kuten vaikkapa ilmailuteollisuudessa, rakentamisessa ja lääkinnällisten laitteiden valmistuksessa”, Tero Mäkinen sanoo.

Tutkimuksessa käytettiin apuna Aallon Science-IT-laskentaprojektia, ja sen rahoitti Suomen Akatemia.

 

Lisätietoja:

Tero Mäkinen
Tutkijatohtori, Aalto-yliopisto
tero.j.makinen@aalto.fi
p. +358 50 527 3744

Remember Me

Sivustolla käytetään evästeitä, joilla voimme parantaa sivustoa ja käyttökokemustasi sekä kohdentaa markkinointiamme. Osa evästeistä on sivuston toiminnalle välttämättömiä. Lue tietosuojaselosteestamme, miten käsittelemme evästeisiin liitettyjä tietoja.